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概要
本研究は，言語と音楽に共通する構造的性質を明

らかにすることを目的とし，Transformerを擬似的な
学習者として用いた計算論的検討を行う．異なる規
則や構造をもつ合成データによる事前学習を施した
モデルを，言語または音楽データでファインチュー
ニングし，各構造的バイアスが学習性能に与える影
響を定量的に評価した．その結果，言語と音楽の双
方に共通して有効または無効となる構造と，ドメイ
ン固有に有効となる構造が存在することが示され
た．特に，可変長の反復構造は両ドメインに有効で
ある一方，拍節構造は音楽に対してのみ有効である
ことが明らかとなった．

1 はじめに
“Language and music define us as human.”

― Aniruddh D. Patel (2007)
言語と音楽が構造的・表現的にどのような共通点

を持ち，それが人間のコミュニケーションや感情表
現にいかなる影響を与えているのかという問いは，
古くから哲学 [1]，生物学 [2, 3]，文学 [4]，認知科
学 [5, 6]など多岐にわたる分野において議論されて
きた．歴史的・進化的観点からも，両者は共通の起
源をもつ可能性が指摘されており，プラトンからル
ソー，ダーウィンに至るまで，多くの思想家が言語
と音楽の連関を論じてきた．言語と音楽の関連性を
理解することは我々人間を理解する上で重要な要因
の一つである．
近年，言語と音楽を人間に固有のコミュニケー

ション体系として比較する研究が進展している．両
者は音声を主要な媒体とし，文化普遍的に存在する
点に加え，階層的構造や時間的展開といった形式的
特徴を共有することが指摘されてきた [5, 6, 7, 8]．
一方で，意味の指示性や統語規則の厳密さにおいて
は重要な差異も存在し，言語と音楽は完全に同一の
体系ではなく，部分的に共有されつつ分岐した認知

システムとして理解されている [6, 9, 10, 11]．
しかし，これらの知見の多くは行動実験や神経科
学的手法に基づいており，構造の学習や一般化の
過程そのものを直接検証することには限界がある
[6, 11]．そこで本研究では，この点を補うために計
算論的モデルを用い，言語と音楽に共通する構造的
バイアスを操作可能な形で検討する．具体的には
Transformerを擬似的な学習者として用い，異なる構
造をもつ合成データによる事前学習を施した複数の
モデルを構築する．これらのモデルをテキストデー
タまたは楽譜データでファインチューニングするこ
とで，どのような構造的バイアスが言語および音楽
の習得に有効に寄与するのかを定量的に評価するこ
とを目的とする．
実験の結果，構造的事前学習の効果は一様ではな
く，導入される構造の性質および対象ドメインに依
存することが示された．可変長の反復構造に基づく
事前学習は言語と音楽の双方において一貫した性能
向上を示した一方で，拍節構造や階層構造に基づく
事前学習はドメイン依存的な結果を示した．特に，
周期的な拍節構造は音楽に対してのみ有効であり，
言語と音楽に有効な構造的バイアスが部分的に共有
されつつも，その適合性が構造の種類によって異な
ることが示唆された．本研究は，言語と音楽におけ
る構造の学習可能性を直接比較可能な形で検討し，
従来の行動実験や神経科学的研究では捉えにくかっ
た学習過程に新たな視点を提供する．

2 関連研究
本研究は，言語と音楽の関連性を探る学際的研
究の系譜の中に位置づけられる．言語と音楽の
関係については，構造的類似性に加え，両者の処
理に関与する認知・神経基盤が部分的に共有さ
れていることが多くの研究によって示されてい
る [5, 6, 9, 10, 12, 13]．このような処理基盤の共有
は，音楽経験が言語能力に波及的な効果をもたらす
可能性とも整合的であり，実際に，歌唱やリズム活
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図 1 実験の全体像．はじめに合成データセットを用いてモデルを事前学習し，その後，言語または音楽データによる
ファインチューニングを行う．最後にテストデータを用いてモデルの性能を評価し，事前学習によって獲得された機能
的バイアスが各モダリティの学習にどの程度寄与するかを測定する．

動が発音，語彙学習，読解流暢性などに寄与するこ
とが報告されている [14, 15, 16, 17, 18]．
第二に，本研究は，深層学習モデルを擬似的な学

習者として用い，人間の言語獲得や処理を検証する
研究の流れにも位置づけられる．計算モデルによる
言語知識の獲得を，仮定された学習環境の下での学
習可能性を示す証明概念として用いる立場が提案さ
れており [19, 20, 21]，この枠組みでは，人間では実
施困難な因果的操作を通じた検証が可能となる．
これらの視点は，言語や音楽とは何かという根源

的な問いとも密接に関係している．どのような構造
的性質が言語や音楽を成立させているのか，また，
それらの境界はどこにあるのかという問題に対し，
計算論的学習の観点から新たな示唆を与えることを
本研究は目指す．

3 手法
本章では，本研究の手法の全体像を概観するとと

もに，実験で用いる合成データの設計について詳述
する．

3.1 概要
本研究では，異なる種類の合成データによる事前

学習が言語と音楽の学習に与える影響を測る．図 1
に手法の全体像を示す．初めに合成データセットの
中から一つを選択し，デコーダ型の Transformerを
事前学習する．その後，テキストデータあるいは楽
譜データでファインチューニングを行い，テスト
データにおけるパープレキシティを評価する．その
結果から，言語，あるいは音楽の学習に役立つ機能
バイアスとなる合成データを推定し，言語と音楽で
この傾向がどう異なるかを分析する．
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図 2 事前学習に使用した合成データセット．各データ
セットは異なる種類の規則または構造をもつ．

3.2 合成データ
本研究では，六種類の合成データセットを構築
し，モデルの事前学習に用いる．各合成データセッ
トは，特定の規則性あるいは構造的特徴を意図的に
付与することで設計されている．図 2に，各データ
セットのトークン列の例を示す．
ジップの法則（Zipf） トークンの出現頻度が
ジップの法則（Zipf’s law）に従うように生成され
た合成データセットである．図 2 (b) に例を示す．
ジップの法則によれば，頻度順位が 𝑟 のトークンの
出現頻度は，最頻トークンの出現頻度に対しておお
よそ 1/𝑟 に比例する．自然言語において語彙の出現
頻度分布がジップの法則に従うことは広く知られて
いるが，音楽の分野においても同様の性質が観察さ
れている．具体的には，音符単体に限らず，複数の
音符から構成される和音やコード進行といった高次
の音楽単位においても，ジップ的な頻度分布が成り
立つことが報告されている [22, 23]．
反復構造（Rep） 長さ 𝑘 のトークン列（以下，

ブロックと呼ぶ）が，直後に必ず同一の順序で繰り
返される構造を持つ合成データセットである．図 2
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図 3 各種構造的事前学習を施した Transformerモデルを，言語および音楽タスクでファインチューニングした際の性能
比較．縦軸はパープレキシティを表す（低いほど性能が高い）．

(c)の例では，長さ 𝑘 = 3のブロック 4,6,3が，連続
して二回出現している．本研究の実験では，反復長
を 𝑘 = 10に固定してデータを生成した．
可変長反復構造（Drep） Drepは Repと同様に

反復構造を含むが，繰り返しの長さ 𝑘 が各ブロック
ごとに一様ランダムにサンプリングされる点が異な
る．図 2 (d)の例では，長さ 𝑘 = 2のブロック 2,4の
反復に続いて，長さ 𝑘 = 3のブロック 1,5,7が反復
されている．本研究の実験では，𝑘 を 1から 100の
範囲で一様にサンプリングすることで，可変長の反
復構造を導入した．
拍節構造（Metric） 周期的・拍節的な構造を捉

えることを目的として設計された合成データセット
である．トークン列の累積和が所定の閾値 𝑁 の倍
数に達するたびに，境界を示すトークン 0を挿入す
ることで，周期的な区切りを明示的に導入する．図
2 (e)の例では，2+5+3=10において一区切りとなり，
続く 4+3+1+2=10において再び区切りが挿入されて
いる．このような周期的な境界構造は，固定長の小
節や拍に基づく音楽のリズム構造を単純化して模倣
したものであり，音楽に特有の時間的・階層的組織
を反映した帰納バイアスをモデルに与えることを
意図している．本研究の実験では 𝑁 = 1000と設定
した．
階層構造（Nest） このデータセットは Dyck言

語としても知られる対応する入れ子括弧列から構成
されている．図 2 (f) に例を示す．各開き記号は正
しい順序で対応する閉じ記号によって閉じられなけ
ればならず，階層的で文脈自由な依存関係となる．
先行研究 [24]に従い，以下の単純な確率的手続きを
用いてトークン列を生成する．各位置において，未

閉鎖の開き括弧が存在しない場合には必ず開き括弧
を選択し，それ以外の場合には，開き括弧を選択す
る確率を 𝑝 = 0.49，直前に開かれている括弧を閉じ
る確率を 𝑝 = 0.51としてランダムに選択する．
交差構造（Cross） このデータセットは Nestが
交差しないように制限されていたのと異なり，依存
関係が交差することを許すように拡張したものであ
る．Semi-dyck言語とも呼ばれる．図 2 (g)に例を示
す．非文脈自由な交差依存を除いて Nestとできる
限り同一となるよう，その他の点では Nestと極力一
致させている．具体的には，開き記号と閉じ記号と
の期待距離を Nestデータセットの経験的分布から
サンプリングし，各開きトークンをどの距離で閉じ
るか決定する際に使用している．

4 実験設定
本研究では，次元数 256，層数 6，自己注意機構の
ヘッド数 8，最大系列長 1,024を持つ，デコーダ型
Transformerモデルを用いた．事前学習には合成デー
タセットを使用し，語彙数を 500に統一した上で，
各データセットにつき 10億（1B）トークンを生成
し，それぞれ独立にモデルを学習した．
自然言語のファインチューニングには English

WikiTextコーパス [25]を用いた．トークナイザには
GPT-2の BPEトークナイザ（語彙数 50,257）を使用
し，最終的な総トークン数は 117Mとなった．音楽
のファインチューニングには，ポピュラー音楽の楽
譜データセットである POP909 [26]を使用した．楽
譜データは，イベント単位のトークナイズ手法であ
る REMI+ [27]に基づいてトークン化し，総トーク
ン数は 53Mとなった．また，楽譜データの前処理



およびMIDI操作にはMusPy [28]を用いた．
事前学習とファインチューニングでは使用する

語彙および語彙数が異なるため，ファインチューニ
ングの開始前に，トークン埋め込み層および出力側
のデコード層（LM head）を初期化する．先行研究
では，これらの層を完全にランダム初期化するより
も，事前学習済みの埋め込みベクトルをランダムに
サンプリングして初期値として用いる方が有効であ
ることが示されており [29]，本研究でも同手法を採
用した．
さらに，事前学習の効果を明確に評価するため，

事前学習を行わずにファインチューニングのみを施
したモデルをベースラインとして比較に用いた．な
お，先行研究 [21]と同様にランダムなトークン列か
らなるデータセット（図 2 (a)に例）を用いた事前学
習についても検討したが，パープレキシティが極端
に大きく，モデル間の詳細な比較が困難であったた
め本研究では除外した．

5 結果・考察
図 3 に結果を示す．なお，Randを用いて事前学

習を行った場合，パープレキシティが極端に大きく
なったため，可視性の観点から図中では省略した．

Zipf は有効な効果を示さなかった． Zipf分布に
基づく事前学習は，言語および音楽のいずれにおい
ても，明確な性能向上を示さなかった．事前学習に
よって獲得できるのはあくまで頻度分布の形状に関
する規則であり，言語や音楽において具体的にどの
語彙や要素が頻出するかといった知識までは含まれ
ない．その結果，モデルは Zipf的な頻度分布という
規則を，実際の言語・音楽の語彙，さらにはより高
次の構造的要素へと一般化することができず，性能
向上に結びつかなかったと考えられる．
複雑な反復構造は高い効果を示した． 固定長の

反復構造のみを含む Repは性能向上に繋がらなかっ
た．単一の反復長に基づいて事前学習されたモデル
は，過度に特化した帰納バイアスを内部化し，新た
なパターンの学習を阻害している可能性がある．一
方，より複雑な反復構造を持つ Drepによる事前学
習は，言語および音楽において一貫した性能向上を
示した．この結果は，可変長の反復構造への曝露
が，言語と音楽の双方に広く存在する，長さの異な
る反復フレーズやモチーフを捉えるための柔軟な帰
納バイアスを誘導することを示唆している．

拍節構造は音楽には有効だが言語には有効でな
かった． Metricによる事前学習は，音楽において
多少の性能向上を示した一方で，言語に対しては有
効性を示さなかった．この結果は予想と整合的であ
る（3.2節参照）．すなわち，周期的な拍節構造は音
楽のリズムにおいて本質的な要素であり（例：4/4
拍子における固定長の小節構造），音楽の構成原理
と強く結びついている．一方，自然言語にはこのよ
うな厳密な時間的周期性は存在しない．したがっ
て，Metricは音楽の構造と整合した帰納バイアスを
導入する一方で，言語構造とは適合しないバイアス
となっており，この不整合が言語タスクにおける性
能向上が見られなかった要因であると考えられる．
階層構造 / 交差構造は言語に有効でなかった．
予想に反して，Dyck言語に類似した階層構造を持
つ Nestおよび，文脈自由文法では表現できない交
差依存を含む Crossのいずれも，言語タスクにおけ
る性能向上をもたらさなかった．一方で，音楽タス
クにおいては両構造が一定の性能向上を示してお
り，階層的あるいは長距離依存的な構造が，音楽の
構成要素（フレーズやモチーフ）の学習には有効に
機能した可能性がある．これらの構造はいずれも統
語理論において重要な役割を果たすものであること
から，言語タスクにおける結果は一見すると直観に
反する．一つの可能な要因として，本研究で用いた
Transformerモデルが比較的小規模（層数 6，次元数
256）であったため，階層構造や交差依存といった
高度な統語的制約を，言語データ上で十分に活用で
きなかった可能性が考えられる．

6 おわりに
本研究では，合成データを用いた事前学習を通じ
て，どのような構造的規則が言語および音楽の学習
に転移するのかを体系的に検証した．その結果，多
様な反復構造は言語および音楽の双方において有効
である一方で，拍節構造や階層構造・交差構造は，
音楽学習時にのみ有効であるという差異が観察され
た．今後，異なるモデルサイズや，合成データにお
ける構造の難易度をより細かく制御した設定での検
証を通じて，言語と音楽の関係性をさらに明らかに
していきたい．また，音楽ジャンルの違いが言語学
習や言語能力に与える影響を調べるなど，より多様
な設定での実験も行っていきたい．
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